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Abstract

Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace 

elemental analysis in the occupational hygiene field, and consequently new ICP-MS international 

standard procedures have been promulgated by ASTM International and ISO. However, there is a 

dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this 

data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace 

air samples was conducted, towards fulfillment of method validation requirements for 

international voluntary consensus standard test methods. The study was performed in accordance 

with applicable statistical procedures for investigating interlaboratory precision. The evaluation 

was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were 

fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels 

ranging from 0.025 to 10 μg filter−1, with three different filter loadings denoted “Low”, “Medium” 

and “High”. Participating laboratories were recruited from a pool of over fifty invitees; ultimately 

twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each 

certified filter with elemental contents at three different levels, plus media blanks spiked with 

reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of 

the test method which each participant was asked to follow; spiking levels were unknown to the 

participants. The laboratories were requested to prepare the filters by one of three sample 

preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, 
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which were described in the test method. Participants were then asked to analyze aliquots of the 

prepared samples by ICP-MS, and to report their data in units of μg filter−1. Most interlaboratory 

precision estimates were acceptable for medium- and high-level spikes (RSD <25%), but generally 

yielded greater uncertainties than were anticipated at the outset of the study.

Introduction

The health of workers in many industries is at risk through exposure by inhalation to toxic 

metals and metalloids.1,2 Industrial hygienists and other public health professionals must 

determine the effectiveness of measures taken to control and minimize occupational 

exposures, and this is generally achieved by monitoring workplace air quality.3–5 Estimation 

of workers' exposures to airborne metals and metalloids by inhalation requires the ability to 

measure target elements at very low levels in workplace atmospheric samples.6 

Traditionally, atomic spectrometric techniques have been used to determine metals and 

metalloids in occupational air samples, especially flame and graphite furnace atomic 

absorption spectrometry (FAAS and GFAAS, respectively) and inductively coupled plasma 

atomic emission spectrometry (ICP-AES).7,8 Efforts are underway to obtain yet lower 

detection limits for toxic elements in workplace atmospheres than those offered by atomic 

absorption, atomic emission and other trace analytical methods. This is driven in part by 

reduced occupational exposure limits (OELs) for some metals, such as beryllium. One of the 

most promising techniques for ultra-trace multi-element analysis is inductively coupled 

plasma mass spectrometry (ICP-MS), which is becoming more widely used in the 

occupational health field.9–11

To address the need for harmonized ICP-MS methods for use by occupational hygiene 

laboratories, international voluntary consensus standard ICP-MS test methods have been 

recently developed and promulgated by ASTM International12 and the International 

Organization for Standardization (ISO).13 These consensus standard methods describe 

aspects of sampling and sample preparation as well as analysis by ICP-MS. Compared to 

FAAS, GFAAS and ICP-AES techniques, ICP-MS offers lower detection limits for most 

elements,14 offering ultra-trace analysis capabilities that are often required for short-term 

workplace air measurements, reduced OELs, measurements of ultrafine particles and 

nanomaterials, etc. ICP-MS offers parts-per-trillion detection capability, which is 3 orders of 

magnitude or better than ICP-AES for most analytes.14,15 Also, a noteworthy advantage of 

ICP-MS is that it suffers from fewer spectral interferences when compared to atomic 

spectrometric methods such as ICP-AES.14,15

The primary objective of this investigation was to conduct an interlaboratory evaluation of 

the ASTM International ICP-MS consensus standard test method, ASTM D7439,12 with a 

goal of obtaining estimates of method performance for elemental analysis based on a 

collaborative trial. To date there is a paucity of validation data for ICP-MS analysis of 

occupational air samples, and it was our desire to endeavor to fill this data void. It was 

intended that the performance data obtained could also be used to assess the parallel ISO 

standard, ISO 30011.13 The inter-laboratory study (ILS) was carried out in consideration of 

an applicable ASTM International standard practice, ASTM E691,16 which describes 
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statistical procedures for investigating interlaboratory precision of ASTM standard test 

methods. In efforts to address multiple outliers that were observed, additional statistical 

analyses were carried out in accordance with robust multivariate methods.17

The ILS was carried out so as to provide ICP-MS performance data for a maximum number 

of elements of interest in the occupational hygiene field. Cellulosic air filter samples 

including metals and metalloids that were distributed in the ILS contained elements for 

which OELs have been established. 18–20 The ILS evaluated aspects of sample transport, 

sample preparation and ICP-MS analysis. Precision and bias estimates from performance 

evaluation samples containing certified levels of 21 elements from 20 volunteer participating 

laboratories (12 North American, 7 European, 1 Asian) are reported herein.

Experimental

Interlaboratory study

The evaluation materials used in the interlaboratory comparison consisted of 37-mm 

diameter mixed-cellulose ester (MCE) filters which were spiked with 21 elements of interest 

(Al, Ag, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, U, V, Zn) at 

certified levels of 0.025 to 100 μg per filter (High Purity Standards, Charleston, SC, USA); 

see Table 1. Media blanks consisted of MCE filters that were spiked with the solution 

reagent containing no added metals and metalloids. The as-received filters were mailed in 

sets of five within sealed plastic containers and were isolated from one another by non-

absorbent separator pads. The levels selected were based on applicable OELs in 

consideration of typical sampling times and air sampling rates (e.g., full-shift 8-hr time-

weighted average sampling at ≈2 l min−1), as well as practical considerations in producing 

the performance evaluation samples.

Laboratories possessing ICP-MS instrumentation and having experience in environmental 

elemental analysis were solicited to participate in the ILS. Performance evaluation samples, 

i.e., the spiked MCE filters, were mailed in triplicate to each volunteer laboratory; spiking 

levels were unknown to the participants. The volunteer laboratories were requested to carry 

out sample preparation and ICP-MS analysis in accordance with the procedures described in 

ASTM D7439.12 Participants were able to choose from one of three sample preparation 

procedures described in the ASTM standard, i.e., hotplate or microwave acid digestion or 

hot-block acid extraction. After ICP-MS analysis, participants were requested to report their 

results to the coordinator of the study in units of micrograms of each element per filter 

sample. A list of the twenty volunteer laboratories that participated in the ILS and returned 

results is presented in Table 2. For purposes of data presentation, laboratories were 

identified by number to guarantee confidentiality of the reported results.

A summary of sample preparation methods used by the participating laboratories in the ILS 

is given in Table 3. Hotplate digestion, microwave digestion and hot block extraction 

procedures that the laboratories were asked to follow are described in A2, A3 and A4 of 

ASTM D7439, respectively. All laboratories employed HNO3 in their sample dissolution 

procedures, and most participants (14) used HNO3 in combination with HCl (Table 3). Final 
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solution volumes after sample preparation were 10 ml, 25 ml or 50 ml, with most 

laboratories (14) reporting 25 ml final volumes and typical dilution factors of 10 to 100×.

ICP-MS analysis instrumentation used by the volunteer laboratories is summarized in Table 

4. The ICP-MS instruments employed came from four manufacturers: Agilent (Santa Clara, 

CA, USA), Perkin Elmer (San Jose, CA, USA), Thermo Fisher (Waltham, MA, USA) and 

Varian (Palo Alto, CA, USA); they were predominantly quadrupole devices. A variety of 

sample introduction systems was reported, with most laboratories reporting the use of 

platinum and/or nickel cones. Seven of the twenty laboratories relied on collision/reaction 

cells for certain elements (e.g., As, Cr, Se, V), normally with He and H2 as collision and 

reaction gases, respectively. A variety of elements were used as internal standards (Table 2 

of ASTM D7439); their concentrations ranged from 1 to 100 μg l_1, depending on the 

particular laboratory. Only one laboratory carried out analyses in a clean room, although two 

other participants used a localized ventilated cabinet to cover the ICP-MS sample 

introduction system.

Statistical analysis

Variability of the reported ILS results was initially investigated using the statistical analysis 

procedures described in ASTM E691.16 In accordance with this consensus standard practice, 

repeatability and reproducibility of the results reported were calculated for each element. 

Repeatability (r) is an estimate of within-laboratory variability, which was computed by 

averaging the squares of the standard deviations of within-laboratory results for each 

sample, and taking the square root of this average. Thus, the average within-laboratory 

standard deviation for each reported result is expressed by the repeatability standard 

deviation, sr. Reproducibility (R) is an estimate of the variability of both within-laboratory 

and between-laboratory results. The reproducibility standard deviation is expressed

where sx is the standard deviation of the mean value as estimated by the average of all 

interlaboratory results for a given spiked sample and n is the number of test results at a 

particular spiking level.

For each element, estimates of absolute bias were calculated by dividing the difference 

between the mean of the laboratory-reported triplicate results and the reference value by the 

reference value:10,21

where Bi, μi and Ri are the bias, mean measured value and reference value, respectively, for 

the ith laboratory-reported value. Where blank correction was done, the relative bias  was 

obtained from:
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where bi is the average blank value for the ith reported result.

For an alternative investigation there were some decisions that had to be made about 

inclusion of data. When laboratories did not provide method detection limit (MDL) values 

for given elements, measurements reported as zeros were dropped from subsequent 

statistical calculations. (See ESI appendix for additional discussion.) Also, at the low level, 

for many metals, there were a few laboratories that reported values less than the MDL, in 

addition, to values less than the MDL for the blanks. These laboratories were removed from 

the blank-corrected statistical analysis at the low level for the metals for which this occurred. 

If MDLs were reported, results below the MDL were substituted as MDL × 2–1/2. In 

addition, the robust models used required that each lab have the same number of analyses. In 

the revised data, an average value is used if there were just two measurements. If the 

laboratory reported measurements and “0” for the blanks, 0 was substituted for “0”, in 

computing the average for blank correction. Because of the above considerations, the 

number of labs used for each metal at each level was quite variable, ranging between 6 and 

19.

Statistical analyses then produced estimates of average bias as well as estimates of standard 

deviation relative to the target (spike) value, assuming normally distributed data. Expressed 

in terms of relative standard deviations (RSDs), this is referred to by NIOSH as RSDtrue;22 

note that estimated . For both non-robust and robust analyses, 

within-laboratory, between-laboratory, and total relative standard deviations (RSDw, RSDb, 

RSDtot, respectively; note that RSDtot = (RSDw
2 + RSDb2)1/2) were estimated for each 

element at each spike level.

For non-robust estimates of variance (where statistical outliers are included and given equal 

weights as non-outliers), linear mixed models were fitted to the relative bias data (the 

values) in order to obtain estimates of the relative bias and estimates of RSDtrue via 

restricted maximum likelihood.22,23

Alternatively, computation of robust statistics by means of “constrained M estimates” (see 

appendix as ESI), as implemented in an applicable statistical package,17 was used to arrive 

at interlaboratory estimates of precision and bias. (Several alternative robust methods were 

also used for comparison, and these are discussed in the appendix; see ESI.) The variance 

output of the statistical program is a 3 × 3 variance-covariance matrix, corresponding to the 

three samples each participating lab analyzed. The between lab variance is estimated as the 

average of the off-diagonal covariances in the variance-covariance matrix. By subtracting 

this average from the average of the diagonal elements, the within laboratory variance is 

obtained. The estimated bias is a weighted average bias for all labs. The robust methods 

considered here are intended to protect against contamination of the data from outliers. Box 

plots in the appendix (ESI) make it clear that there are many potential outliers in these data. 

Because these robust methods do not work well with very small data sets, for the four metals 
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with 8 or fewer qualifying labs, the (h,k) statistics of ASTM E69116 are used (see appendix 

in ESI). For comparison the chosen robust method was also used for these four metals; the 

robust estimates are close to the (h,k)-based estimates, except for silver.

Results

Non-robust statistics

Overall interlaboratory ICP-MS results, in terms of average percent recoveries (and with 

standard deviations in percents, as represented by error bars), are summarized in Fig. 1 and 

Fig. 2 for elements having negligible and significant blank levels reported, respectively. 

Overall mean values were calculated based on the pooled means for the average of the three 

results reported by each laboratory for each element; however, it is noted that some 

laboratories did not report results for all elements. Percent recoveries were determined based 

on the spiking levels listed in Table 1, and standard deviations (as values of sR
16) were 

correspondingly normalized to percents. The data summarized in Fig. 1 and 2 are 

uncorrected for blanks and statistical outliers, with the following exceptions: In six cases 

(one value each for: Ag, Pb and U at low loading; Ag and Mn at medium loading; and Ag at 

high loading), obvious outliers (single reported values that differed from the remainder by 

>2 orders of magnitude) were discarded.

For the nine elements with negligible blank values reported (Fig. 1), ILS mean recoveries 

for low loadings (refer to Table 1 for elemental spiking levels) ranged from 104% for Co to 

130% for Cd. However, for the eleven elements with significant blanks reported (Fig. 2), 

most ILS elemental measurements of low loadings were positively biased. With exception of 

the elements As and Sb (for which mean recoveries of 100% and 104%, respectively, were 

obtained), mean recoveries ranged from 144% for Ag to 395% for Mg. In general, 

interlaboratory precision showed high variability for low-level spiked filters: for elements 

having negligible blanks reported, sr ranged from 17% for Ba to 64% for Be and V, while 

for elements with significant blanks, sr values ranged from 36% for As to 190% for Se. For 

low loadings, the best ILS results were obtained from As, Ba, Co, Cu and Pb, with generally 

acceptable recoveries (100% ± 20%) and better precision than for other elements at these 

loadings (RSDtot <0.35). Only one element at low loading, i.e., Ba, had RSDtot <0.20. For 

these spiking levels the poorest ILS data were reported for Al, Be, Cr, Fe, Mg, Mn, Ni, Se, 

V and Zn, which demonstrated high bias (mean recovery >150%) and/or high imprecision 

(RSDtot >0.35).

Mean recoveries for medium loadings (again, see Table 1 for spiking levels) were close to 

quantitative (100% ± 15%) for nearly all (20/21) elements,10 whether the reported elemental 

blank values were significant or not (Fig. 1 and 2): mean recoveries ranged from 97% for Ba 

to 120% for Fe. ILS precision estimates for medium-level spiked samples were much better 

than for low loadings; sr ranged from 8% for Ba and Cd to 38% for V. For medium loadings, 

two-thirds of the elements (14 of 21) yielded interlaboratory RSDs (as RSDtot) of #0.25. For 

medium loadings, acceptable interlaboratory results were obtained for the elements As, Ba, 

Be, Cd, Co, Cr, Cu, Mn, Ni, Pb and U, with good recoveries (100% ± 10%) and precision 

(RSDtot <0.20). At these loading levels, the most imprecise ILS results were obtained for 

Ag, Sb and V (RSDtot >0.30).
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Mean recoveries for ILS samples spiked at high levels (once again, refer to Table 1) were 

less than 100% for all elements (Fig. 1 and 2); means ranged from 78% for Ni to 99% for 

Sn, with recoveries for most elements between 80-90%. ILS precision estimates for high-

spiked samples were generally acceptable, with 20 of 21 elements yielding values of RSDtot 

<0.2. For high loadings, the best ILS results were reported for As, Fe, Sb and Sn: these 

elements yielded acceptable recoveries (90-100%) and precision (RSDtot <0.2). The poorest 

ILS results at this loading level were reported for Ag with RSDtot >0.4, and Ni and V, both 

with mean recoveries <80%.

Robust analysis results

ICP-MS interlaboratory precision statistics for blank-corrected low-level spikes, based on 

results reported by the twenty participating laboratories and treated statistically in 

accordance with non-robust16,22 as well as robust17 techniques, are summarized in Table 5. 

(Because the observed interlaboratory precision estimates were especially variable for low-

level spikes (Fig. 1 and 2), robust statistics were applied to these results in an effort to 

further investigate ILS variability for these loading levels.) It is shown for most elements 

that blank correction significantly reduces the absolute value of the bias (recall Fig. 1 and 2), 

although almost all blank-corrected bias estimates are negative. After blank adjustment and 

correction for outliers (Table 5), a third of the elements (7/21) have biases <10% (absolute 

value). For blank-corrected, robust estimates (Table 5), 33% (7/21) of the values for within-

laboratory RSDs (RSDw) are >0.40, and, similarly, 33% (7/21) of the values for between-

laboratory RSDs (RSDb) are >0.40. Also, for about one-quarter (5/21) of the elements at this 

loading level, RSDw exceeds RSDb (Table 5); it is uncommon for within-laboratory 

variability to exceed between-laboratory variability. However, the medium and low levels 

also had labs with RSDw exceeding RSDb. The difference is that the size of the exceedances 

was much larger at the low level. (See aluminum, iron, and silver in Table 5). For blank-

corrected robust estimates of low loadings, about 40% (8/21) of the elements have RSDtot 

>0.50. Thus, even after correction for potential outliers, there remains high variability in the 

ILS data from low-level spikes; only 8 out of 21 elements yielded RSDtot <0.25.

Blank-corrected ILS results for medium and high loadings are shown in Tables 6 and 7, 

respectively. Only non-robust statistical treatments were applied to these data sets, i.e., 

outliers were not removed. For results from medium loadings (Table 6), 16 of 21 elements 

have RSDw < RSDb, while for high spikes (Table 7), 17 of 21 elements yielded RSDw < 

RSDb. After blank subtraction of medium level spike values (Table 6), 16 of 21 elements 

gave absolute value of bias #0.1; for blank-corrected high loadings, only 6 of 21 elements 

demonstrated absolute value of bias #0.1. Medium-level estimates of RSDtot for Al is very 

high (0.95: Table 6), and the high-loading value of RSDtot for Ag is also quite high (0.51: 

Table 7).

Discussion

The significantly biased ILS results for Al, Fe, Mg, Se, and Zn at low loading levels (Fig. 2) 

are not entirely unexpected, as MCE filters spiked with reagent have been shown to contain 

significant background levels of these elements;24 nevertheless, the magnitudes of the some 
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of the bias estimates are surprisingly high. Metals contamination from sources such as water, 

acids, laboratory ware and equipment has been documented25 and can be a serious problem 

for ultra-trace elemental analysis techniques like ICP-MS. Also for low loadings, numerous 

elements (notably Al, Fe, Mg, Mo, Ni, Se, Zn) yielded very high imprecision (Table 5), 

which is suggestive of contamination problems. Multiple participating laboratories did not 

report results for low level samples, suggesting frequent over-dilution of low-level spiked 

filters after extraction or digestion. A number of participants reported method detection 

limits (MDLs) of ≥0.5 μg sample−1 for several elements; in practice, much lower MDLs 

should be accessible when using ICP-MS.12,13 Robust statistical treatment of low-level 

spike samples (Table 5) still results in high imprecision for most elements: thus even when 

correcting for outliers, there is still high variability. The results from the present 

investigation suggest that numerous occupational hygiene laboratories need to do more to 

prevent metals contamination, especially when conducting elemental measurements at sub-

microgram per sample levels.

The low loading results for elements with significant blanks may be high for the following 

reasons: for Cr because of uncorrected or poorly corrected ArC+; for Se due to uncorrected 

or poorly corrected Ar2
+; for Mg, Mn, Ni and Zn due to contamination. Besides 

contributions from contamination, polyatomic interferences that could have given rise to the 

observed positive bias for iron, if no interference correction was applied, are 40Ar16O+ 

and 40Ar16OH+ for 56Fe+ and 57Fe+ isotopes, respectively.14,26 The high interlaboratory 

RSD observed for vanadium (with monitoring of the 51V+ isotope) could be ascribed to 

variability in correction interference from 35Cl16O+15,26 for those laboratories using aqua 

regia (or reverse aqua regia) sample dissolution methods. It is emphasized that the biases 

and variabilities concerned are almost certainly not attributed to contamination of the 

sampling media in many, if not all, instances. They are elements that are ubiquitous in the 

laboratory environment. Al, Fe, Mg and Zn are commonly present in background, and even 

elements like Ni are often leachable from disposable labware at parts-per-billion levels. On 

top of this there is the potential for carryover from digestion vessels used to prepare samples 

at higher levels of the elements of interest and, of course, uncorrected or partially corrected 

interferences.27 Nevertheless, as a practical point, in normal occupational hygiene practice it 

is probably rare that elements such as Al, Mg and Zn will be measured at sub-mg levels per 

filter sample, in consideration of their rather high OELs (Table 1).

Generally, blank-corrected data for medium-level spiked filters demonstrated mostly 

negative biases and significantly better precision than low-level spikes (Table 6). 

Nevertheless, many elements yielded precision estimates greater than the target value of 

0.20. It is relevant to point out that applicable proficiency testing programs typically 

investigate only a few metals (such as As, Cd, Cr, Cu, Pb),28,29 thus sample preparation and 

analysis procedures in many laboratories will normally have been optimized for particular 

target elements.

For high loading ILS samples, the negative biases observed for most elements (Table 7) can 

be attributed to material losses from the filters during transport. Many laboratories reported 

discoloration of the separator pads between the spiked filters for the high-loading samples, 

indicating that spiking material had transferred from the spiked filters to the separator pads. 
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Most of the precision estimates are <0.20 for the high-spiked filters, which were loaded at 

levels commonly investigated in proficiency testing schemes for elemental analysis.

In summary, the results from this ILS generally demonstrated measures of significant bias 

and precision for trace elemental analysis by ICP-MS, especially for low loadings (<0.25 μg 

filter−1). While some laboratories obtained results that were largely unbiased and precise, 

others reported values that were highly biased and variable. Appreciable contribution to bias 

and interlaboratory uncertainty could be due to a number of the participants having limited 

experience in ICP-MS analyses. It is expected that ICP-MS laboratory performance will 

improve as more experience is gained by laboratories performing trace analysis of 

occupational hygiene samples. Proficiency testing schemes typically show improved overall 

interlaboratory performance with succeeding rounds as laboratories obtain experience with 

new analytical techniques and sample matrices.30 Additional work is currently underway 

that is hoped will fulfill requirements for performance data of fully validated international 

standard ICP-MS procedures for workplace air measurements, in analogous fashion to 

investigations involving ambient air and emissions monitoring.31–33
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Environmental impact

This research is significant because it investigates the performance of laboratories that 

analyze occupational hygiene samples for their trace elemental content, with a goal of 

estimating workers' occupational exposures. Reductions in occupational exposure limits 

(OELs) for metals and metalloids present significant analytical challenges relating to 

ultra-trace elemental measurement by atomic spectrometric techniques such as 

inductively coupled plasma mass spectrometry (ICP-MS). Knowledge garnered from this 

inter-laboratory study can assist in understanding and addressing analytical challenges 

involving ultra-trace elemental determinations. Laboratories can use this knowledge to 

take corrective actions to improve performance and ensure accurate trace analyses.
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Fig. 1. 
ICP-MS ILS results – Elements with negligible blank levels reported; error bars are standard 

deviations. (“Low,” “Med” and “Hi” refer to Low, Medium and High filter loading levels, 

respectively.)
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Fig. 2. 
ICP-MS ILS results – Elements with significant blank levels reported; error bars are 

standard deviations. (“Low,” “Med” and “Hi” refer to Low, Medium and High filter loading 

levels, respectively.)
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Table 2
Participants in the ICP-MS interlaboratory study

Laboratory Location

ALS Laboratory Groupa (ALS) Salt Lake City, Utah, United States

Bureau Veritas North America (BVNA) Novi, Michigan, United States

BWXT Y-12 National Security Laboratory (Y-12) Oak Ridge, Tennessee, United States

Environmental Resource Associates (ERA) Arvada, Colorado, United States

Eurofins Environnement (Eurofins) Saverne, France

Health and Safety Laboratory (HSL) Buxton, England, United Kingdom

Hungarian Institute of Occupational Health (HIOH) Budapest, Hungary

Institut de Recherche Robert Sauvè et en Sècuritè du Travail (IRSST) Montrèal, Quèbec, Canada

Institut National de Recherche et de Sècuritè (INRS) Vandoeuvre-lès-Nancy, France

Institut Technique des Gaz de l'Air (ITGA) Saint-Etienne, France

Japan National Institute of Occupational Safety and Health (JNIOSH) Kawasaki, Japan

Laboratoire Central de la Prèfecture de Police (LCPP) Paris, France

Navy Central Industrial Hygiene Laboratory (CIHL) San Diego, California, United States

Occupational and Environmental Safety Laboratory (OESL), Institute of Naval 
Medicine

Gosport, England, United Kingdom

Occupational Safety and Health Administration (OSHA), Salt Lake Technical Center Sandy, Utah, United States

Research Triangle Institute International (RTI) Research Triangle Park, North Carolina, United States

Savannah River Nuclear Solutions (SRNS), Savannah River Site Aiken, South Carolina, United States

United States Geological Survey (USGS) Denver, Colorado, United States

University of Cincinnati (UC), Department of Chemistry Cincinnati, Ohio, United States

US Army Public Health Commandb (USAPHC) Aberdeen Proving Ground, Maryland, United States

a
Formerly DataChem Laboratories.

b
Formerly US Army Center for Health Promotion and Preventive Medicine (USACHPPM).
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Table 3
Summary of sample preparation methods used by participating laboratories

Acid mixture + Heating technique used No. of laboratories

HNO3/HCl + hot block 8

HNO3/HCl + microwave 4

HNO3/HCl + hot plate 2

HNO3/H2O2 + hot block 1

HNO3/H2O2 + microwave 1

HNO3/HCl/H2O2 + microwave 1

HNO3/H2O + microwave 1

HNO3/HF + microwave 1

HNO3/HClO4/HCl/H2O2 + hotplate 1
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Table 4
ICP-MS analysis instrumentation used by participating laboratories

ICP-MS instrumentation No. of laboratories

Agilent 7500 series 7

Thermo VG 5

Perkin Elmer 6000 series 4

Varian 820 series 2

Varian 700 1

Thermo Elemental 1
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